(3) résultats pour votre recherche

Aujourd’hui, il n’est pas évident de s’y retrouver sur le sujet de l’algorithmie. Mais d’ailleurs, qu’est-ce que c’est exactement un algorithme ? A quoi ça sert ? Et dans quel cadre faut-il l’utiliser ?

Tout d’abord une définition, et je trouve celle du Larousse correcte : « Un Algorithme est un ensemble de règles opératoires dont l'application permet de résoudre un problème énoncé au moyen d'un nombre fini d'opérations. Un algorithme peut être traduit, grâce à un langage de programmation, en un programme exécutable par un ordinateur ».
Si on essaye de répondre aux 2 autres questions, je dirai que la mise en place d’un algorithme permet de se simplifier la vie (gain de temps, règle de gestion, automatisation, prévisions, …).

Son utilisation est au final la partie la plus délicate à appréhender. Elle se traduit en 3 étapes :

A quel besoin métier répond-il ? La difficulté est de bien définir la problématique et d’identifier le périmètre d’intervention. C’est une étape qu’il ne faut pas négliger car c’est bien celle-ci qui va diriger les étapes suivantes. Il est donc nécessaire d’avoir un bon échange entre le métier, la technique et les producteurs experts en Data Science. La traduction du besoin est un élément essentiel afin que les équipes se comprennent, délivrent un bon algorithme et exploitent opérationnellement celui-ci. Très souvent, une négligence sur cette étape engendre beaucoup de temps et d’énergie passés pour au final une non-utilisation de l’algorithme et beaucoup de frustration.

Viens ensuite, la réalisation de l’algorithme. Plusieurs méthodes s’offrent à nous. Cela dépend du besoin, de la complexité, et des outils à dispositions. Pour des besoins simples et cadrés, il n’est pas nécessaire d’utiliser des solutions de Data Sciences à tout prix. Un bon requêteur peut parfois faire l’affaire. Pour une optimisation des programmes créés, bien évidemment, même le simple programme peut se faire via les outils existants. Quand on arrive à des besoins plus complexes, nous voyons une tendance des experts à n’utiliser que des techniques de Machine Learning et/ou les dernières méthodes à la « mode » (Random Forest, Réseaux de neurones, Régression pénalisée, …). Nous sommes les 1ers à les utiliser, mais attention, ces méthodes et techniques ne répondent pas toujours de manière simple au besoin exprimé et parfois il est difficile de maîtriser et d’expliquer le résultat obtenu. A la question, que vous nous préconisez-vous ? Nous allons répondre, au-delà du pré requis de réponse au besoin, qu’il faut mixer les techniques et méthodes. Utiliser des méthodes traditionnelles et des nouvelles méthodes. Une bonne vieille régression logistique continue de faire le job et est aujourd’hui complétement maîtrisé par les Data Scientists, elle a aussi le gros avantage de présenter une équation facilement compréhensible par les équipes.

L’exploitation de l’algorithme est devenue une étape indispensable à la création de performance. Cela ne veut pas dire qu’il ne faut plus essayer de nouveaux modèles dans le cadre de projet R&D, mais il est nécessaire d’exploiter certains algorithmes pour prouver l’utilité et la création de valeur. Dans cette partie, nous pouvons de nouveau distinguer 3 phases : Une phase de test afin de valider que l’algorithme fonctionne et apporte de la valeur. Une phase d’implémentation dans le ou les SI afin d’apporter cette couche d’intelligence à travers les outils de l’entreprise. Et une phase de mesure pour confirmer les tendances du test, calculer la création de valeur et valider la pérennité de l’algorithme.

Ces 3 phases sont indispensables pour obtenir le fruit des investissements liés aux algorithmes. Comme d’habitude, nous continuons de privilégier le pragmatisme et la communication au sein de ce type de projet. L’ennemi de l’algorithme est le temps de mise en place. Très souvent parce que les étapes n’ont pas été bien réalisées, on se retrouve avec des retards de livraison, des questionnements et des remises en cause qui suivent…
Pour terminer, le besoin identifié chez nos clients & prospects vient surtout sur les étapes 1 et 3 en accompagnement conseil, et sur l’étape 2 quand il existe un manque de ressource.
Bref, pour éviter d’être déçus, soyez méthodiques ou faites vous accompagner dans les premières étapes de ce type de projet.
Notre recommandation DATA 2018

Etes-vous prêts pour 2018 ?

Avez-vous tous les outils pour relever les objectifs de l’année 2018 ?

Avis d'expert : Samuel Stratmains, co-fondateur de Know Your People

>> Un accompagnement expert ou multi expert peut vous faire gagner du temps et vous faire franchir une marche cruciale.
Vous n’êtes pas sans savoir que la Data va encore jouer un rôle primordial dans la réussite de l’année 2018. Il faudra bien entendu avancer avec la nouvelle législation qui entrera en vigueur dès le mois de mai. Mais au-delà de l’environnement extérieur, la question est plutôt de savoir si vous êtes équipés des bons outils pour relever les défis.

Nous constatons chez nos clients et sur le marché en général, que les BDD CRM et Digitales sont matures. Il y a eu une vraie prise de conscience sur l’organisation et la gestion de la donnée depuis ces 10 dernières années. Tout le monde n’est pas encore au summum de la qualité et de l’exploitation des BDD, mais chacun à son niveau sait les chantiers à réaliser pour progresser ! Tout cela va bien évidemment dans le sens d’une meilleure relation et une expérience client réussies !

Les clés de la réussite sur le sujet de la Data résident dans la préparation des chantiers prioritaires. Il est nécessaire d’anticiper et de mesurer les besoins humains et technologiques afin d’obtenir tout ou partie des budgets associés pour atteindre l’ambition. Sans entrer dans une vision à 3 ans sur ce que sera la data dans votre entreprise, il est important d’écrire des feuilles de routes (road map) sur la gestion de la Data et sur l’exploitation de celle-ci, sans oublier l’usage que vous allez en faire ; le fameux pour quoi faire ? Notre agence experte et hybride « Technique – Analytique – Marketing » a cette capacité à vous accompagner sur l’ensemble de la chaine métier CRM & digitale. De nos jours, il faut savoir donner du sens au projet et mesurer les résultats de ce que nous entreprenons.

Nous vous proposons 3 types de road maps :

#1 La road map en Data Management
Nous pouvons vous accompagner avec un de nos partenaires* en fonction des sujets identifiés (Collecte, Architecture, Flux, Qualité, Organisation, Gestion des règles, Enrichissement, …). La finalité est de construire un rapport compréhensible par la technique et accessible du métier.

#2 La road map en Data Analyse ou Data Science
C’est notre cœur de métier. Cette road map se décompose en plusieurs projets qui pourraient être, en fonction de votre demande :
  • Expression ou construction des besoins métiers. Exploiter la Data, oui, mais pourquoi faire, pour quel usage ? Et pour atteindre quels objectifs ?

  • Diagnostic des datas existantes et identification des chantiers d’amélioration ou de traitements de la data. C’est une étape facultative si vous avez une bonne connaissance de votre capital client.

  • Diagnostic des datas existantes et identification des chantiers d’amélioration ou de traitements de la data. C’est une étape facultative si vous avez une bonne connaissance de votre capital client.

  • Identification des principaux outils analytiques à mettre à place sur les axes transactionnel, relationnel, social, communautaire, digital, produit, … Il s’agira dans cette phase de déterminer les nouveaux groupes et/ou scores stratégiques permettant de faciliter la personnalisation.

  • Accompagnement des équipes à la réalisation des projets analytiques. Nous intervenons de plusieurs manières. Soit, vous êtes autonomes sur la production à partir de la feuille de route créée. Soit, nous accompagnons les équipes opérationnelles à la réalisation des productions en maintenant un suivi régulier (point bimestriel ou mensuel à définir). Soit, nous réalisons en prestation de service les productions et nous vous livrons les résultats.

  • Intégration dans la méthodologie de la mesure des outils créés. Sont-ils efficients ? Ont-ils créé de la valeur ? A court, moyen ou long terme ? Le tout étant de construire dès le départ la mécanique de mesure permettant d’apporter de la visibilité et d’approcher un ROI.

#3 La road map orientée marketing
Il s’agira de construire un plan d’activation mesurable prenant en compte les nouveaux segments analytiques. Une nouvelle fois, nous pouvons vous accompagner avec un de nos partenaires* spécialisés en marketing client & digital et marketing stratégique afin d’intégrer ces nouveaux outils avec cohérence vis-à-vis de l’existant. Dans cette partie, il existe 2 niveaux. Un premier niveau qui consiste à réaliser un ensemble de tests & learn. Un second qui intègre ces nouveaux outils dans le plan d’animation existant, phase d’extrapolation. Dans les 2 cas, nous mettons en place une méthodologie de mesure des résultats afin de se forger des convictions et prouver la performance.

Notre accompagnement se fait sur la durée afin de vous garantir un accompagnement adéquat. Nous faisons régulièrement des points d’arrêt afin de valider que nous sommes toujours en phase avec la ou les road map. C’est un moment privilégié où nous actons les modifications de la road map. Concernant les budgets, l’engagement se fait step by step et en fonction de vos besoins. Il faudra compter en moyenne 10K€ par road map. En termes de résultats, nous avons constaté des rendements en croissance de 10% à 15% minimum.

Besoin de faire le point ?

Pour établir une simulation de vos besoins sur votre environnement, appelez-nous !

Samuel

*Pour connaitre nos partenaires, contactez-nous. Nous activons les meilleurs experts en fonction de votre problématique.
Quand le prédictif s’invite dans les stratégies marketing 1/2

Le prédictif, un mot que l’on entend de plus en plus souvent… Sommes-nous prêts aujourd’hui à développer une vraie stratégie analytique autour des modèles prédictifs ?
Les techniques de statistiques prédictives ne sont pas nouvelles. Depuis plus de 20 ans, nous construisons des algorithmes afin de créer des modèles prédictifs robustes et performants qui améliorent toujours un peu plus l’expérience client.

Il existe trois paramètres importants à prendre en compte avant de se lancer :
  • La matière première : les data
  • La problématique : la variable ou le phénomène à expliquer
  • L’exploitation du modèle créé

Sur le premier point, notre bac à sable s’est très largement agrandi avec l’arrivée des data digitales. Si jusqu’à il y a encore quelques temps, les modèles prédictifs étaient construits à partir des données CRM classiques (transactionnelles, comportementales, socio démographiques), nous avons aujourd’hui accès à des données complémentaires qui viennent caractériser les comportements des consommateurs (données de navigations, sociales, et plus généralement les données digitales). L’enjeu aujourd’hui, est de pouvoir croiser les data de ces deux mondes (CRM & Digital). Les méthodes de réconciliation sont prêtes et les acteurs sur le marché proposent leur service à une qualité de matching qui devient intéressante (d’un point de vue statistique). Il ne reste plus qu’à définir la question à laquelle on souhaite répondre. Et c’est précisément ce point qu’il ne faut pas négliger !

Nous sommes convaincus que la construction de la « variable à expliquer » est un point majeur à la création de valeur future. Il est donc nécessaire de prendre le temps de définir une problématique qui soit réalisable et en adéquation avec la stratégie marketing. Que cherchons-nous à faire ? Réduire l’attrition ? Identifier l’appétence ? Maximiser la conversion ? Autant de sujet intéressant et d’actualité, mais qui restent généralistes et qui demandent à être préciser. Parle-t-on de contacts, de clients ou de prospects ? Intégrons-nous tous les segments de clients ou réalisons un focus sur une cible en particulier ? Vous l’aurez compris, il existe des filtres à intégrer dans la définition de la population à étudier. Ensuite, à nous de détecter les moments de vie et les cibles où nous maximiserons la conversion.

Le troisième point est peut-être le plus important. Il est indispensable d’utiliser / de tester / d’exploiter l’algorithme créé. Souvent nous remarquons qu’il existe de beaux scorings dans les entreprises, mais qui ne sont pas ou peu utilisés. Pour quelles raisons ? Juste parce qu’il existe encore une barrière de langage entre les dataminers / datascientists et le métier. Ou tout simplement parce que les équipes en place n’ont pas créé le modèle et donc n’en maîtrise pas les tenants et aboutissants. Sans oublier que les modèles prédictifs ont une durée de vie et qu’il est nécessaire, selon nous, de valider la véracité et la pérennité des algorithmes créés régulièrement. En d’autres termes, il ne s’agit pas de créer en one shot un score, mais il faut veiller à son application et sa performance dans le temps.
Un accompagnement dans les plans d’actions et la mesure des résultats peut-être nécessaire. L’objectif de performance peut alors augmenter de 15% à 20% avec un bon score, sur une bonne population, sur une bonne offre.
En d’autres termes, c’est un super outil prédictif, à vous, à nous de l’utiliser dans les meilleures conditions.
Contactez-nous pour faire le point !