(5) résultats pour votre recherche

Le développement de l’Intelligence Artificielle ouvre de nouvelles perspectives aux acteurs du marketing. Et ceux-ci ne s’y trompent pas car près de 70% des marques envisagent d’utiliser l’IA pour personnaliser les offres et l’expérience clients. Toutefois la question se pose légitimement de savoir jusqu’où nous devons faire confiance aux modèles pour prendre des décisions à notre place. Nous allons essayer de vous donner quelques clés sur le sujet.

Apprentissage supervisé et non supervisé

Un premier point important à prendre en compte lorsque l’on traite de sujets d’Intelligence Artificielle est de savoir si le modèle que l’on va mettre en place va reposer sur un apprentissage supervisé ou non. En effet, le « mythe de l’IA », comme on pourrait l’appeler, repose sur le principe que la machine va analyser de manière totalement autonome les données qu’on lui met à disposition pour trouver des solutions à un problème que potentiellement on ne lui aurait pas poser ! De manière plus pragmatique, les modèles d’apprentissage non supervisé permettent essentiellement aujourd’hui de définir des groupes d’individus homogènes ayant des caractéristiques communes. Ce système va alors souvent permettre de créer des systèmes de recommandation pertinents (Netflix fait ça très bien par exemple pour vous recommander les films et séries les plus susceptibles de vous intéresser en se basant sur les films et séries vus par des individus qui vous ressemblent).
Dans la majorité des cas, ce sont donc plutôt les modèles supervisés qui vont être utilisés. Dans ce cadre, un Data Scientist va devoir guider la machine. En particulier, il va devoir définir les résultats attendus sur un volume important de données d’apprentissage afin que l’algorithme apprenne et puisse reproduire les mécaniques de décision qu’il aura apprises sur un nouveau jeu de données. Dans ce cas, l’humain joue donc un rôle important dans l’apprentissage du modèle et dans son exploitation future.

L’IA doit servir la stratégie et non pas la remplacer

En conséquence, on comprend bien que l’IA est bien souvent guidée par nos choix d’apprentissage et les données qu’on va lui mettre à disposition. On peut même aller plus loin en considérant que la stratégie marketing doit guider les actions des Data Scientists afin de concevoir les modèles les plus utiles aux experts marketing dans l’atteinte de leurs objectifs.
Plus généralement, il est même intéressant d’envisager l’apport de la Data Science (au sens large) à la stratégie marketing. En effet, bien souvent, on va pouvoir nettement augmenter la performance des dispositifs en mettant en place un process analytique pertinent reposant sur différents allers-retours entre stratégie et analyse. Aujourd’hui, la data doit accompagner la stratégie, et la stratégie doit guider la recherche de la performance. A titre d’exemple, on peut imaginer le process suivant :
1. Construction d’une segmentation adaptée
2. Identification des priorités stratégiques grâce à la matrice de passage
3. Définition des priorités opérationnelles par segment
4. Construction des modèles prédictifs adaptés à chaque cible (segment) et chaque problématique (attrition, recommandation, cross-sell…)
5. Test & Learn et mesure de la performance
6. Adaptation des modèles et des dispositifs
Bref, un équilibre fin à trouver entre les inputs de la stratégie à la Data Science et de la Data Science à la stratégie ! Et où les modèles IA supervisés ou non permettront de gagner en performance tout en ouvrant la voie à de nouveaux champs de recherche.

Ce sont des sujets qui vous intéressent ? Nous sommes là pour en parler avec vous. Notre pragmatisme et notre discours vulgarisé seront les clés de la réussite de votre prochain projet d’IA.
Chaque jour ou presque le sujet de l’avenir de notre planète est au centre des débats. En particulier, la notion d’empreinte carbone est un indicateur récurrent dans la mesure de l’impact écologique de nos activités humaines.

Lorsque vous envoyez des emails commerciaux à vos clients, les serveurs mails de votre entreprise stockent l’email avant de l’envoyer. Comme tout serveur, ils consomment de l’électricité et plus ils sont chargés, plus ils chauffent et plus ils nécessitent d’électricité pour refroidir.
On estime actuellement qu’un email simple a une empreinte carbone de 4g de CO2. Une entreprise envoyant régulièrement des newsletters à ses clients va donc vite voir son empreinte carbone augmenter. A titre d’exemple, si vous envoyez 1 million d’emails, 2 fois par semaine, l’empreinte carbone de votre animation clients sera de 416 tonnes sur une année. Soit plus de 200 allers-retours Paris-New York pour un passager !

Vous l’aurez compris, l’animation clients a donc un impact fort sur l’empreinte carbone de votre entreprise. Pour la réduire, il est donc fondamental d’optimiser ces ciblages marketing.

Comment peut-on réduire son empreinte carbone grâce à la Data Science ?
Pour ce faire, nous vous recommandons 2 outils analytiques simples :
- La segmentation clients :
Il existe de nombreux types de segmentations (segmentation transactionnelle, segmentation relationnelle, segmentation 360°…), mais toutes ont le même point commun : elles permettent de créer des groupes de clients homogènes sur lesquels nous allons pouvoir mettre en place un plan d’animation différencié.
Bien souvent, lors de la mise en place d’une segmentation, nous recommandons de faire le bilan du plan d’animation de l’année précédente pour bien comprendre les spécificités de chaque segment. En particulier, cette analyse va permettre de déterminer la pression commerciale optimale à appliquer à chaque segment.
Ce premier outil, si vous ne l’avez pas encore mis en place, va donc vous permettre en passant d’une logique d’envois de masse à une logique d’envois segmentés de baisser le nombre moyen d’emails envoyés. De la même façon, si vous avez déjà une segmentation existante, gardez en tête que celle-ci a une durée de vie et qu’elle peut être challengée ou modifiée via d’autres axes discriminants.

- Le scoring :
En termes de scoring, nous travaillons de plus en plus sur 2 niveaux de ciblage : le score de repoussoir et le score d’appétence.
Le premier, le score de repoussoir, va permettre d’isoler les clients qui ont une forte probabilité de ne pas ouvrir vos prochaines newsletters. Pourquoi les cibler, si on pressent dès aujourd’hui que l’email n’aura pas d’impact ? Ce premier type de score va donc réduire considérablement les volumétries d’envois. A ce jour, les scores de repoussoir que l’on a construit pour nos clients ont permis de réduire la volumétrie d’envois de l’ordre de 20 à 30% des volumes initiaux.
En parallèle, sur les potentiels ouvreurs, tous les messages n’ont pas le même niveau d’intérêt. Il est donc préférable, à ce niveau, de construire les scores d’appétence adéquats permettant de cibler les clients réellement intéressés par le message envoyé. Cela va vous permettre de combiner une diminution des volumes d’envois avec une hausse des performances commerciales (souvent de l’ordre de 15 à 25%). En conclusion : faire plus avec moins… d’empreinte carbone !

Bien évidemment, nous sommes conscients que ces sujets analytiques, et la Data Science en général, peuvent être perçus comme investissement important. Chez KYP, nous avons pris l’habitude de nous engager sur ces sujets d’accompagner nos clients dans la mesure du ROI et de la création de valeur.

Comme vous avez pu le lire, il peut être assez simple de réduire votre empreinte carbone tout en développant le potentiel commercial de votre base de données. Nous nous tenons à votre disposition pour tout échange sur ce sujet d’actualité et sur la mise en place d’actions analytiques concrètes ! Contribuez à réduire votre empreinte carbone tout en étant en phase avec vos valeurs et/ou celle de votre entreprise.
La Segmentation Relationnelle est-elle aussi puissante que la Segmentation Transactionnelle ?

Tout d’abord, définissons ces deux termes afin de parler de la même chose. Cela peut paraître évident, mais très souvent, nous nous rendons compte chez nos clients que bien définir le cadre et ses composants permet de gagner du temps et d’éviter les quiproquos !
La Segmentation Transactionnelle permet de créer des groupes de clients homogènes les uns par rapport aux autres sur l’axe d’analyse principal qu’est l’acte d’achat. La donnée est généralement disponible et donc cette analyse est plutôt simple à mettre en place. A cela, nous pouvons ajouter d’autres critères d’analyses, comme le type de produit ou encore le canal, permettant par croisement d’affiner les segments.
La Segmentation Relationnelle permet elle aussi de créer des groupes de clients homogènes, mais sur un ou plusieurs axes d’analyses liés aux interconnexions avec le client, que celles-ci soient provoquées ou spontanées. Cela dépend donc l’écosystème data disponible et de la connexion 360° que l’on peut capter du client. Nous pouvons ainsi étudier la réaction à un email, une connexion au site, un post, un échange sur un Chat, un contact au service Relation Client, …

Dans le 1er cas, nous estimons la Valeur Client, dans le second cas nous mesurons l’Engagement Client.



La Segmentation Transactionnelle, analyse référente pour approcher une valeur client
Depuis quelques décennies maintenant la Segmentation Transactionnelle est une analyse référente, voire obligatoire, pour approcher une valeur client. Nous trouvons ainsi un ensemble d’analyse éprouvée, telle que la PMG (Petit, Moyen, Gros), la RFM (Récence, Fréquence, Montant), la FRAT (Frequency, Recency, Amount, Type), et encore plein d’autres modèles créant des groupes homogènes avec pour variable d’entrée le Chiffre d’Affaire.

Les utilisations de cet outil analytique sont nombreuses :

  • Le pilotage de l’activité à partir de segments ordonnés. Qui sont mes 20/80 ? Qui sort et qui entre ? Et à quelle valeur ?
  • Prioriser et personnaliser les opérations marketing de son Plan d’Animation à partir des segments (Bas de fichier, Occasionnel, Haut de fichier).
  • Projeter le business généré et/ou les résultats du Plan d’Animation par segment en fonction des volumes.

La Segmentation Relationelle, nouvelle analyse liée à la disponibilité des données du Client 360°



La Segmentation Relationnelle intéresse aujourd’hui bon nombre d’annonceurs pour plusieurs raisons.
  • L’axe transactionnel est devenu « un basique » dans les opérations marketing et qu’il ne fait plus forcément la différence et ne crée plus autant d’additionnel, d’où l’intégration de ce nouvel axe. De plus, chez les annonceurs qui ont un cycle de consommation long (ex. automobile), l’utilisation de ce type de données prend tout son sens.
  • Les données de la relation client comme les données d’actions/réactions sont devenus disponibles dans les BDD Clients. Le Client 360° devient une réalité et les données associées deviennent plus facilement exploitables.
  • La 3ème raison est liée au secteur d’activité. En effet, les industriels, les institutions ou encore les sociétés de service qui n’ont pas ou peu de points de vente se sont constitués des BDD de contacts sur lesquelles ils suivent les interactions de leurs abonnés. Au fur et à mesure du temps, ils se sont constitué un historique de données permettant d’identifier les habitudes et les comportements des contacts, et ont donc créé des segments pour mieux les exploiter.

La Segmentation Relationnelle est aussi utilisée :
  • Dans le pilotage de plan relationnel (Retour client, croissance de l’intérêt vis-à-vis de la marque, Satisfaction et la Recommandation, ou encore l’augmentation de la part de voix).
  • Dans la personnalisation et la priorisation des opérations marketing grâce à du contenu adapté (lecture des Newsletter ou navigation trackée par exemple).
  • Dans la définition des temps de contact et l’amélioration de la pression commerciale.
  • Dans l’identification des « super engagés », c’est-à-dire ceux qui ouvrent tous les emails, qui se connectent très souvent, voire qui vous défendent sur des blogs et forums. Parmi ceux-ci se trouvent les Ambassadeurs de la marque.

La Segmentation Relationnelle, super outil de pilotage

Pour terminer, en termes de performance et de résultats, la Segmentation Relationnelle donne de très bons résultats. Plusieurs points pour expliquer ce fait.
  • Quand il n’existe pas de données transactionnelles, cette segmentation est un super outil de pilotage et donne les mêmes résultats de performance que la segmentation transactionnelle.



  • Quand on a la possibilité d’avoir les 2 types de segmentations, on remarque un très fort taux de commun dans les hauts segments. Et en croisant les 2 segmentations, on arrive à aller chercher quelques points complémentaires de performance grâce à une meilleure personnalisation, de +5 à 10 points par campagne.



De plus, on trouve même des individus très engagés qui ne sont pas identifiés dans la BDD Transactionnelle, ce qui augmente la communication avec son cœur de cible. On mesure ainsi la température du pouvoir relationnel, donc de l’engagement de ses propres clients.

En conclusion, cette Segmentation Relationnelle apporte une autre dimension dans la connaissance client et permet de mieux personnaliser encore et toujours la relation client.

Notre vision d’expert : Ajouter un axe relationnel au transactionnel vous permettra de donner une nouvelle impulsion à votre Plan d’animation.
Bilan des soldes d’hiver 2018 : pourquoi faire un bilan d’activité clients ?

Avec l’émergence du Black Friday, la multiplication des ventes privées et des promotions régulières en cours de saisons, les soldes ne sont plus le RDV incontournable qu’elles étaient.
Sans surprise, les premiers bilans de cette fin de soldes d’hiver 2018 confirment que cette période de destockage attire de moins en moins de consommateurs en magasins physiques, comme l’indique le panel PROCOS : baisse de près de 4% d’activité en janvier 2018 vs janvier 2017, qui lui-même était en recul de plus de 6% vs janvier 2016.



Dans un contexte de promotions quasi-continues et de durée de soldes variable d’une année à l’autre (dès 2019, les soldes devraient être réduites de 6 à 4 semaines) : comment faire un bilan pertinent et exploitable de votre fin de saison ?
Parce que la mesure et la recherche constante de l’optimisation sont au cœur de notre ADN, nous vous proposons plusieurs analyses éprouvées pour réaliser un bilan d’activité complet orienté valeur client.

Réaliser un bilan sur l’année plutôt que par opération commerciale

L’effet de cannibalisation entre promotions et soldes perturbe les analyses et fatalement, effectuer un bilan par opérations commerciales perd de sa pertinence.
Pour citer l’exemple du secteur du prêt-à-porter, selon les données de l'Institut français de la mode (IFM), le poids des promotions dans le chiffre d'affaires du secteur a progressé de 5% pour atteindre 27% des ventes depuis 2014. Parallèlement, celui des soldes a reculé de 7% pour totaliser 20% des ventes d'habillement.



Et c’est là que l’analyse orientée client prend tout son sens.
Analyser la problématique sur l’année et d’un point de vue valeur client permet de prendre de la hauteur et de raisonner sur le ROI de vos actions :
  • Segmenter le portefeuille clients, en créant des groupes de clients homogènes en fonction de leur valeur et de leur comportement d’achat (Segmentation RFM).
  • Identifier les segments clients fidélisés grâce aux opérations commerciales de l’années.
  • Valider si le taux de générosité accordé par segment client est cohérent avec la marge contributrice générée.



Ensuite, il est nécessaire d’adapter en conséquence la répartition des enveloppes budgétaires (budgets promotions, taux de générosité) selon la valeur des clients que vous souhaitez recruter, fidéliser et réactiver.

Par ailleurs, d’autre indicateurs tels que le profil des clients, l’analyse des produits vendus, les comportements de navigation ou encore les baromètres de satisfaction… sont autant de variables qui permettront d’établir un bilan encore plus complet de votre saison.

Optimiser le taux de fidélisation post-soldes

Même si les chiffres atteints ne sont pas toujours à l’objectif, on observe régulièrement des pics de recrutement clients pendant ces périodes. Des clients captés par les différentes communications multicanal, qui viennent enrichir les bases de données.

Mais si le recrutement durant cette période augmente, il n’en est pas toujours de même de sa qualité.

Et c’est tout l’enjeu post soldes.
Comment distinguer les clients à potentiel, sur lesquels il faut investir, des clients opportunistes à faible potentiel ?



Dans ce contexte, au milieu de clients zappeurs sur lesquels les communications n’auront aucun un impact, se cachent les pépites qui demain deviendront des ambassadeurs de votre marque !

C’est dans cette optique d’optimisation de ROI que KYP peut vous accompagner. Via des algorithmes prédictifs performants, nous vous aidons à identifier les clients les plus susceptibles de rentrer dans votre cœur de cible et à les transformer !

__________________________________________________________________________
[1] PROCOS, la Fédération du Commerce Spécialisé, a constitué un panel de 50 enseignes sur leur performance dans 50 pôles de références situés dans 15 agglomérations
Source : LSA CONSO.fr, Le commerce specialisé boucle un mois de janvier en baisse de 3,5 % [PROCOS], article du 15 Février 2018

[2] Source : La Tribune.fr, A partir de 2019, les soldes ne dureront plus que 4 semaines, 10 janvier 2018
Comment donner un coup de boost à votre Segmentation transactionnelle pour améliorer les performances ?

Dans la catégorie des segmentations basées sur des méthodes descriptives, la segmentation de type RFM est l’un des outils les plus utilisés pour segmenter les bases de données Clients.
Cette analyse a amplement prouvé sa validité, sa robustesse et sa facilité de mise en place du fait du peu de données nécessaires. Elle répond parfaitement à la création d’une valeur client et donc de l’identification des 20/80. Ce premier step peut être suffisant dans de nombreux cas, néanmoins, elle ne prend pas en compte un élément important de la relation client, à savoir le cycle de vie de celui-ci.

En effet, ce type de segmentation est figé et est basé sur un historique. A l’instant T nous connaissons la valeur client passé et nous déduisons un comportement proche dans le futur qui oriente notre plan de ciblages. Pourtant les cycles de vie clients nous indiquent, par exemple, que certains clients à potentiel à l’instant T du fait de leur consommation, de leur profil, de leur comportement sur la période précédente seront churners dans un futur proche.
Nous devons donc répondre à la question suivante : « Suis-je en début de cycle / début de projet, suis-je au milieu, ou suis-je à la fin du cycle ? » Ce critère temporel nous permet d’apporter une personnalisation complémentaire dans le ton et le discours du message que je souhaite faire parvenir à mon client.

La solution que Know Your People vous propose, est de modéliser le cycle de consommation en créant un algorithme prédictif basé sur des données comportementales.

Pour exploiter le fruit de ce travail dans vos plans d’animation, nous vous proposons :
  • soit d’utiliser cet algorithme prédictif seul afin d’identifier les potentiels.
  • soit de mixer la segmentation descriptive (RFM) et le score prédictif de potentiel des différents segments. (notre recommandation)

L’idée d’utiliser la force couplée de l’algorithme RFM et de celui du scoring permet de déterminer la valeur du segment à l’instant T et probabiliser son potentiel futur ! La prise en compte du cycle de consommation nous permet d’augmenter les taux de conversion de près de 5%.

Ci-dessous, un visuel du croisement des 2 analyses :



Par regroupement, on obtient ainsi 9 segments pour lesquels on observe un niveau d’engagement croissant : Inactifs profonds, Inactifs réactivables, Nouveaux sans potentiel, Nouveaux à potentiel, Clients en risque, Medium, Bronze, Silver, Gold.
L’identification du niveau d’activité en fonction de la valeur actuelle nous permettra d’adapter plus finement l’offre à la cible.

Plus d’hésitation, venez challenger votre segmentation actuelle avec cette nouvelle approche KYP ! Essayer c’est l’adopter !