Archive de (Décembre 2015)

Quand le prédictif s’invite dans les stratégies marketing 1/2

Le prédictif, un mot que l’on entend de plus en plus souvent… Sommes-nous prêts aujourd’hui à développer une vraie stratégie analytique autour des modèles prédictifs ?
Les techniques de statistiques prédictives ne sont pas nouvelles. Depuis plus de 20 ans, nous construisons des algorithmes afin de créer des modèles prédictifs robustes et performants qui améliorent toujours un peu plus l’expérience client.

Il existe trois paramètres importants à prendre en compte avant de se lancer :
  • La matière première : les data
  • La problématique : la variable ou le phénomène à expliquer
  • L’exploitation du modèle créé

Sur le premier point, notre bac à sable s’est très largement agrandi avec l’arrivée des data digitales. Si jusqu’à il y a encore quelques temps, les modèles prédictifs étaient construits à partir des données CRM classiques (transactionnelles, comportementales, socio démographiques), nous avons aujourd’hui accès à des données complémentaires qui viennent caractériser les comportements des consommateurs (données de navigations, sociales, et plus généralement les données digitales). L’enjeu aujourd’hui, est de pouvoir croiser les data de ces deux mondes (CRM & Digital). Les méthodes de réconciliation sont prêtes et les acteurs sur le marché proposent leur service à une qualité de matching qui devient intéressante (d’un point de vue statistique). Il ne reste plus qu’à définir la question à laquelle on souhaite répondre. Et c’est précisément ce point qu’il ne faut pas négliger !

Nous sommes convaincus que la construction de la « variable à expliquer » est un point majeur à la création de valeur future. Il est donc nécessaire de prendre le temps de définir une problématique qui soit réalisable et en adéquation avec la stratégie marketing. Que cherchons-nous à faire ? Réduire l’attrition ? Identifier l’appétence ? Maximiser la conversion ? Autant de sujet intéressant et d’actualité, mais qui restent généralistes et qui demandent à être préciser. Parle-t-on de contacts, de clients ou de prospects ? Intégrons-nous tous les segments de clients ou réalisons un focus sur une cible en particulier ? Vous l’aurez compris, il existe des filtres à intégrer dans la définition de la population à étudier. Ensuite, à nous de détecter les moments de vie et les cibles où nous maximiserons la conversion.

Le troisième point est peut-être le plus important. Il est indispensable d’utiliser / de tester / d’exploiter l’algorithme créé. Souvent nous remarquons qu’il existe de beaux scorings dans les entreprises, mais qui ne sont pas ou peu utilisés. Pour quelles raisons ? Juste parce qu’il existe encore une barrière de langage entre les dataminers / datascientists et le métier. Ou tout simplement parce que les équipes en place n’ont pas créé le modèle et donc n’en maîtrise pas les tenants et aboutissants. Sans oublier que les modèles prédictifs ont une durée de vie et qu’il est nécessaire, selon nous, de valider la véracité et la pérennité des algorithmes créés régulièrement. En d’autres termes, il ne s’agit pas de créer en one shot un score, mais il faut veiller à son application et sa performance dans le temps.
Un accompagnement dans les plans d’actions et la mesure des résultats peut-être nécessaire. L’objectif de performance peut alors augmenter de 15% à 20% avec un bon score, sur une bonne population, sur une bonne offre.
En d’autres termes, c’est un super outil prédictif, à vous, à nous de l’utiliser dans les meilleures conditions.
Contactez-nous pour faire le point !