(8) résultats pour votre recherche

La Segmentation Relationnelle est-elle aussi puissante que la Segmentation Transactionnelle ?

Tout d’abord, définissons ces deux termes afin de parler de la même chose. Cela peut paraître évident, mais très souvent, nous nous rendons compte chez nos clients que bien définir le cadre et ses composants permet de gagner du temps et d’éviter les quiproquos !
La Segmentation Transactionnelle permet de créer des groupes de clients homogènes les uns par rapport aux autres sur l’axe d’analyse principal qu’est l’acte d’achat. La donnée est généralement disponible et donc cette analyse est plutôt simple à mettre en place. A cela, nous pouvons ajouter d’autres critères d’analyses, comme le type de produit ou encore le canal, permettant par croisement d’affiner les segments.
La Segmentation Relationnelle permet elle aussi de créer des groupes de clients homogènes, mais sur un ou plusieurs axes d’analyses liés aux interconnexions avec le client, que celles-ci soient provoquées ou spontanées. Cela dépend donc l’écosystème data disponible et de la connexion 360° que l’on peut capter du client. Nous pouvons ainsi étudier la réaction à un email, une connexion au site, un post, un échange sur un Chat, un contact au service Relation Client, …

Dans le 1er cas, nous estimons la Valeur Client, dans le second cas nous mesurons l’Engagement Client.



La Segmentation Transactionnelle, analyse référente pour approcher une valeur client
Depuis quelques décennies maintenant la Segmentation Transactionnelle est une analyse référente, voire obligatoire, pour approcher une valeur client. Nous trouvons ainsi un ensemble d’analyse éprouvée, telle que la PMG (Petit, Moyen, Gros), la RFM (Récence, Fréquence, Montant), la FRAT (Frequency, Recency, Amount, Type), et encore plein d’autres modèles créant des groupes homogènes avec pour variable d’entrée le Chiffre d’Affaire.

Les utilisations de cet outil analytique sont nombreuses :

  • Le pilotage de l’activité à partir de segments ordonnés. Qui sont mes 20/80 ? Qui sort et qui entre ? Et à quelle valeur ?
  • Prioriser et personnaliser les opérations marketing de son Plan d’Animation à partir des segments (Bas de fichier, Occasionnel, Haut de fichier).
  • Projeter le business généré et/ou les résultats du Plan d’Animation par segment en fonction des volumes.

La Segmentation Relationelle, nouvelle analyse liée à la disponibilité des données du Client 360°



La Segmentation Relationnelle intéresse aujourd’hui bon nombre d’annonceurs pour plusieurs raisons.
  • L’axe transactionnel est devenu « un basique » dans les opérations marketing et qu’il ne fait plus forcément la différence et ne crée plus autant d’additionnel, d’où l’intégration de ce nouvel axe. De plus, chez les annonceurs qui ont un cycle de consommation long (ex. automobile), l’utilisation de ce type de données prend tout son sens.
  • Les données de la relation client comme les données d’actions/réactions sont devenus disponibles dans les BDD Clients. Le Client 360° devient une réalité et les données associées deviennent plus facilement exploitables.
  • La 3ème raison est liée au secteur d’activité. En effet, les industriels, les institutions ou encore les sociétés de service qui n’ont pas ou peu de points de vente se sont constitués des BDD de contacts sur lesquelles ils suivent les interactions de leurs abonnés. Au fur et à mesure du temps, ils se sont constitué un historique de données permettant d’identifier les habitudes et les comportements des contacts, et ont donc créé des segments pour mieux les exploiter.

La Segmentation Relationnelle est aussi utilisée :
  • Dans le pilotage de plan relationnel (Retour client, croissance de l’intérêt vis-à-vis de la marque, Satisfaction et la Recommandation, ou encore l’augmentation de la part de voix).
  • Dans la personnalisation et la priorisation des opérations marketing grâce à du contenu adapté (lecture des Newsletter ou navigation trackée par exemple).
  • Dans la définition des temps de contact et l’amélioration de la pression commerciale.
  • Dans l’identification des « super engagés », c’est-à-dire ceux qui ouvrent tous les emails, qui se connectent très souvent, voire qui vous défendent sur des blogs et forums. Parmi ceux-ci se trouvent les Ambassadeurs de la marque.

La Segmentation Relationnelle, super outil de pilotage

Pour terminer, en termes de performance et de résultats, la Segmentation Relationnelle donne de très bons résultats. Plusieurs points pour expliquer ce fait.
  • Quand il n’existe pas de données transactionnelles, cette segmentation est un super outil de pilotage et donne les mêmes résultats de performance que la segmentation transactionnelle.



  • Quand on a la possibilité d’avoir les 2 types de segmentations, on remarque un très fort taux de commun dans les hauts segments. Et en croisant les 2 segmentations, on arrive à aller chercher quelques points complémentaires de performance grâce à une meilleure personnalisation, de +5 à 10 points par campagne.



De plus, on trouve même des individus très engagés qui ne sont pas identifiés dans la BDD Transactionnelle, ce qui augmente la communication avec son cœur de cible. On mesure ainsi la température du pouvoir relationnel, donc de l’engagement de ses propres clients.

En conclusion, cette Segmentation Relationnelle apporte une autre dimension dans la connaissance client et permet de mieux personnaliser encore et toujours la relation client.

Notre vision d’expert : Ajouter un axe relationnel au transactionnel vous permettra de donner une nouvelle impulsion à votre Plan d’animation.
Notre recommandation DATA 2018

Etes-vous prêts pour 2018 ?

Avez-vous tous les outils pour relever les objectifs de l’année 2018 ?

Avis d'expert : Samuel Stratmains, co-fondateur de Know Your People

>> Un accompagnement expert ou multi expert peut vous faire gagner du temps et vous faire franchir une marche cruciale.
Vous n’êtes pas sans savoir que la Data va encore jouer un rôle primordial dans la réussite de l’année 2018. Il faudra bien entendu avancer avec la nouvelle législation qui entrera en vigueur dès le mois de mai. Mais au-delà de l’environnement extérieur, la question est plutôt de savoir si vous êtes équipés des bons outils pour relever les défis.

Nous constatons chez nos clients et sur le marché en général, que les BDD CRM et Digitales sont matures. Il y a eu une vraie prise de conscience sur l’organisation et la gestion de la donnée depuis ces 10 dernières années. Tout le monde n’est pas encore au summum de la qualité et de l’exploitation des BDD, mais chacun à son niveau sait les chantiers à réaliser pour progresser ! Tout cela va bien évidemment dans le sens d’une meilleure relation et une expérience client réussies !

Les clés de la réussite sur le sujet de la Data résident dans la préparation des chantiers prioritaires. Il est nécessaire d’anticiper et de mesurer les besoins humains et technologiques afin d’obtenir tout ou partie des budgets associés pour atteindre l’ambition. Sans entrer dans une vision à 3 ans sur ce que sera la data dans votre entreprise, il est important d’écrire des feuilles de routes (road map) sur la gestion de la Data et sur l’exploitation de celle-ci, sans oublier l’usage que vous allez en faire ; le fameux pour quoi faire ? Notre agence experte et hybride « Technique – Analytique – Marketing » a cette capacité à vous accompagner sur l’ensemble de la chaine métier CRM & digitale. De nos jours, il faut savoir donner du sens au projet et mesurer les résultats de ce que nous entreprenons.

Nous vous proposons 3 types de road maps :

#1 La road map en Data Management
Nous pouvons vous accompagner avec un de nos partenaires* en fonction des sujets identifiés (Collecte, Architecture, Flux, Qualité, Organisation, Gestion des règles, Enrichissement, …). La finalité est de construire un rapport compréhensible par la technique et accessible du métier.

#2 La road map en Data Analyse ou Data Science
C’est notre cœur de métier. Cette road map se décompose en plusieurs projets qui pourraient être, en fonction de votre demande :
  • Expression ou construction des besoins métiers. Exploiter la Data, oui, mais pourquoi faire, pour quel usage ? Et pour atteindre quels objectifs ?

  • Diagnostic des datas existantes et identification des chantiers d’amélioration ou de traitements de la data. C’est une étape facultative si vous avez une bonne connaissance de votre capital client.

  • Diagnostic des datas existantes et identification des chantiers d’amélioration ou de traitements de la data. C’est une étape facultative si vous avez une bonne connaissance de votre capital client.

  • Identification des principaux outils analytiques à mettre à place sur les axes transactionnel, relationnel, social, communautaire, digital, produit, … Il s’agira dans cette phase de déterminer les nouveaux groupes et/ou scores stratégiques permettant de faciliter la personnalisation.

  • Accompagnement des équipes à la réalisation des projets analytiques. Nous intervenons de plusieurs manières. Soit, vous êtes autonomes sur la production à partir de la feuille de route créée. Soit, nous accompagnons les équipes opérationnelles à la réalisation des productions en maintenant un suivi régulier (point bimestriel ou mensuel à définir). Soit, nous réalisons en prestation de service les productions et nous vous livrons les résultats.

  • Intégration dans la méthodologie de la mesure des outils créés. Sont-ils efficients ? Ont-ils créé de la valeur ? A court, moyen ou long terme ? Le tout étant de construire dès le départ la mécanique de mesure permettant d’apporter de la visibilité et d’approcher un ROI.

#3 La road map orientée marketing
Il s’agira de construire un plan d’activation mesurable prenant en compte les nouveaux segments analytiques. Une nouvelle fois, nous pouvons vous accompagner avec un de nos partenaires* spécialisés en marketing client & digital et marketing stratégique afin d’intégrer ces nouveaux outils avec cohérence vis-à-vis de l’existant. Dans cette partie, il existe 2 niveaux. Un premier niveau qui consiste à réaliser un ensemble de tests & learn. Un second qui intègre ces nouveaux outils dans le plan d’animation existant, phase d’extrapolation. Dans les 2 cas, nous mettons en place une méthodologie de mesure des résultats afin de se forger des convictions et prouver la performance.

Notre accompagnement se fait sur la durée afin de vous garantir un accompagnement adéquat. Nous faisons régulièrement des points d’arrêt afin de valider que nous sommes toujours en phase avec la ou les road map. C’est un moment privilégié où nous actons les modifications de la road map. Concernant les budgets, l’engagement se fait step by step et en fonction de vos besoins. Il faudra compter en moyenne 10K€ par road map. En termes de résultats, nous avons constaté des rendements en croissance de 10% à 15% minimum.

Besoin de faire le point ?

Pour établir une simulation de vos besoins sur votre environnement, appelez-nous !

Samuel

*Pour connaitre nos partenaires, contactez-nous. Nous activons les meilleurs experts en fonction de votre problématique.
Comment et pourquoi exploiter les data digitales ?

Plus les mois passent et plus les experts de la relation client doivent se positionner sur l’utilisation des données digitales qu’ils collectent. Même si aujourd’hui, bon nombre d’enseignes utilisent un outil de tag management, tous n’exploitent pas ces datas dans leur environnement CRM. Se pose alors la question du matching des datas digitales avec l’environnement data existant…

Know Your People peut vous accompagner à engager un projet de réconciliation et d’exploitation des datas Digitales dans votre environnement analytique. Notre méthode est simple : nous sommes chef d’orchestre sur l’ensemble de la chaîne et nous sommes experts sur la partie analyse.

Un bon projet doit automatiquement être bien drivé. C’est pourquoi, dans notre rôle de chef d’orchestre, nous vous proposons d’être l’interlocuteur privilégié de vos services techniques. Nous serons aussi les traducteurs du besoin métier. Si la compétence n’est pas disponible chez vous, vous pouvez compter sur notre réseau de partenaires techniques (expert du tag management, des plans d’implémentation, de la récupération et l’intégration, et de la réconciliation). Concernant la partie analytique, au-delà de la partie Profiling ou même les méthodes « Lookalike », nous allons jusqu’à mesurer le pouvoir explicatif de vos données digitales.

Néanmoins, avant la phase de mise en œuvre technologique et son exploitation, il reste primordial de définir le périmètre et les premiers objectifs du projet. La concrétisation d’un use-case est donc un incontournable pour embarquer les équipes qui seront amenées à travailler sur le projet et/ou à utiliser les résultats.

Un exemple de use-case : La digitalisation des clients off-line avec un objectif d’augmentation de la performance par une communication personnalisée dans les campagnes et une meilleure identification lors des visites sur le site permettant un contenu adéquat. La performance sera alors mesurée par l’acte d’achat réalisé en magasin ou sur le site.

Le bénéfice engendré : une expérience client aboutie et un engagement renforcé.

La mise en place du use-case peut se faire sous forme d’un POC (Proof Of Concept). Le POC permet de formaliser le projet test sur un délai court, avec des investissements faibles et maitrisés pour un résultat mesuré. Le sujet choisi doit être clair, simple et pragmatique pour une compréhension maximale. Prouver l’efficacité par le chiffre et rassurer sur les investissements consentis.

En cas de réussite, l’extrapolation en est facilitée puisque la démarche existe, avec quelques ajustements si besoin. Ceci est donc un bon moyen pour entrer dans une politique et une stratégie Omnicanal.

Contactez-nous pour un échange, nous vous donnerons notre vision par rapport à votre projet.
Comment les marketeurs peuvent-ils utiliser la Data Science pour mesurer la rentabilité de leur plan d'animation ?

Parmi les sujets sur lesquels nous sommes souvent sollicités par nos clients, la question de la mesure du ROI du plan d’animation occupe une place particulière.



En effet, lorsque l’on doit justifier de nouveaux investissements, tant humains que techniques, afin de développer l’animation clients, la question qui revient sans cesse est de savoir ce que rapporte le plan d’animation. A cette question, nous avons développé une réponse en 3 points essentiels qui permettent de créer les conditions nécessaires à la mesure de ce ROI.

1. Construire les bons étalons
Lorsque l’on évoque la mesure du ROI, on évoque mécaniquement la mesure de l’additionnel. Combien de chiffre d’affaires est-ce que j’arrive à générer en plus grâce à mon plan d’animation ?
Cette mesure de l’additionnel nécessite de construire des populations de référence qui serviront de base de comparaison dans les analyses. Nous préconisons d’en construire de 2 types :
  • Des populations témoins sur chaque opération : leur rôle est de mesurer l’additionnel qu’apporte chaque opération individuellement. Cela vous permettra d’identifier les opérations à pérenniser ou au contraire celles à abandonner
  • Une zone blanche figée à l’année : son rôle est de mesurer l’additionnel d’activité des clients animés versus cette population qui ne recevra aucune sollicitation. On est ici dans la mesure de l’additionnel du plan d’animation.

Ces 2 niveaux de mesure sont complémentaires. Ainsi la somme des additionnels individuels de chaque opération sera systématiquement inférieur à l’additionnel du plan d’animation (ce n’est pas parce que le client n’a pas réagi à cette opération qu’elle n’aura pas un impact sur le long terme dans les préférences d’achat de votre client), mais elle vous permettra aussi de mesurer le poids des impacts directs et indirects de l’animation sur le comportement des clients.

Malgré tout une question reste en suspens : à quelle opération dois-je affecter la performance lorsque plusieurs opérations ont lieu en même temps ?

2. Attribuer la performance à la bonne opération
Lorsque l’on met en place un plan d’animation assez dense, on peut rapidement se retrouver confronté à une problématique d’attribution de la performance à la bonne opération. En effet, doit-on considérer que c’est le premier contact qui a initié la démarche d’achat ? Ou au contraire que c’est le dernier contact qui est le déclencheur ?

En règle générale, les outils du marché ont des modèles d’attribution prédéfinis :
  • Au premier contact : la vente est attribuée au levier ayant initié l’achat
  • Au dernier contact : la vente est attribuée au levier ayant précédé l’achat
  • Équivalent : tous les leviers impliqués se voient attribuer la même pondération
  • Croissant : la pondération augmente à mesure que l’on approche de la date d’achat

Nous pensons que la réalité est plus complexe et doit tenir compte des spécificités de votre plan d’animation. En particulier, l’étude des courbes de remontée peuvent mettre en valeur des différences assez marquée sur la durée de suivi entre 2 opérations distinctes.

Un autre point à prendre en compte dans l’attribution de la performance est la notion de retour strict vs retour large. En effet, le fait d’identifier un code offre, un code produit ou un code remise spécifique à une opération va permettre d’identifier de manière plus sûre le déclencheur.

Fort de ces constats, nous avons développé notre propre algorithme d’attribution de la performance basée sur ces différents éléments.

3. Un process de mesure validé par les financiers

Nous travaillons avec les équipes financières pour valider la méthodologie et les KPIs à suivre pour valider la pérennité du process de calcul de rentabilité.

A cette fin, en plus de la mesure de l’additionnel, nous appréhendons la structure de coûts induits par le plan d’animation. On peut alors mesurer les gains marginaux (CA et marge) issus de l’investissement dans le plan d’animation.

Il n’est pas trop tard pour mettre en place ce type de démarche sur 2017, Contactez-nous !

Matthieu D.
Quand le prédictif s’invite dans les stratégies marketing 2/2

Comme nous vous l’évoquions le mois dernier, Il existe trois paramètres importants à prendre en compte avant de se lancer dans l’aventure du marketing prédictif :
  • La matière première : les data
  • La problématique : la variable ou le phénomène à expliquer
  • L’exploitation du modèle créé

Mais qu’en est-il de cette phase de modélisation à proprement parler ? Alors que le mois dernier nous vous expliquions la partie fonctionnelle du marketing prédictif, nous vous proposons ici de vous expliquer la manière dont nous travaillons sur les méthodes de scoring et de modélisation. Cette méthodologie d’analyse éprouvée repose sur 6 étapes clés :
1. La compréhension des données disponibles : Au travers d’un diagnostic analytique, nous définissons les variables utiles à l’analyse. Il s’agit de répondre aux questions suivantes : est-ce que toutes vos données sont exploitables ? Certaines ne présentent-elles pas des biais ? Sont-elles suffisamment renseignées ? Quelles sources de données sont disponibles ? Nous allons jusqu’à définir une stratégie de data collect.

2. La construction de la variable cible : la première question est bien de savoir ce que l’on cherche à faire d’un point de vue CRM (lutter contre l’attrition, améliorer les ciblages,…). Au travers d’une phase d’analyse exploratoire des données et d’interviews avec le métier, nous construisons les règles de gestion permettant de définir cette variable. Notre premier objectif est d’impliquer notre interlocuteur dans la compréhension globale de la démarche analytique.

3. La construction des agrégats utiles : cette phase est majeure, elle est la plus longue dans la construction du modèle. Elle représente 60 à 70% du temps de réalisation. En lien avec la variable cible, il est nécessaire de transformer certaines données, d’en combiner d’autres. Bref trouver les agrégats les plus pertinents issus de vos données brutes pour expliquer la variable cible. Des analyses croisées entre données brutes et variable cible nous permettent de trouver les agrégats à construire.

4. La réalisation d’un échantillonnage pertinent : en modélisation statistique, il ne faut pas réaliser votre modèle sur toute la population. Deux explications à cela : des millions de lignes de données à analyser qui peuvent prendre beaucoup de temps sans améliorer les modèles et la nécessité d’avoir une population test pour valider les modèles. Plusieurs méthodologies d’échantillonnage existent, il faut être vigilant lors de la construction de l’échantillon de travail à ce que cet échantillon soit représentatif statistiquement de votre population globale.

5. La modélisation ou la réponse à la problématique : la modélisation repose sur 2 grands éléments, le choix du type de modèle à appliquer et la réalisation du modèle (le calcul des coefficients) à proprement parler. Aujourd’hui les outils de Machine Learning ont grandement contribué à avancer dans cette problématique car ils trouvent à notre place le modèle le plus performant. Attention toutefois à s’assurer de la pertinence du modèle tant à court terme qu’à moyen terme.

6. La mesure des résultats et la validation du modèle : une première étape de validation de cette pertinence va reposer dans la mesure des résultats obtenus au travers de la confrontation des résultats entre la population d’apprentissage et la population test, en particulier par l’utilisation des matrices de classement. Ceci va nous permettre d’éprouver la qualité du modèle et donc d’en valider la pertinence.
C’est par la maitrise de ces 6 étapes que l’on réussit à mettre en œuvre des modèles pertinents et robustes.

L’objectif final est bien de vous accompagner dans l’exploitation du modèle au travers d’un plan d’actions opérationnel. La mesure des résultats confirmera la création de valeur.

Prêts pour l’aventure prédictive ?
Quand le prédictif s’invite dans les stratégies marketing 1/2

Le prédictif, un mot que l’on entend de plus en plus souvent… Sommes-nous prêts aujourd’hui à développer une vraie stratégie analytique autour des modèles prédictifs ?
Les techniques de statistiques prédictives ne sont pas nouvelles. Depuis plus de 20 ans, nous construisons des algorithmes afin de créer des modèles prédictifs robustes et performants qui améliorent toujours un peu plus l’expérience client.

Il existe trois paramètres importants à prendre en compte avant de se lancer :
  • La matière première : les data
  • La problématique : la variable ou le phénomène à expliquer
  • L’exploitation du modèle créé

Sur le premier point, notre bac à sable s’est très largement agrandi avec l’arrivée des data digitales. Si jusqu’à il y a encore quelques temps, les modèles prédictifs étaient construits à partir des données CRM classiques (transactionnelles, comportementales, socio démographiques), nous avons aujourd’hui accès à des données complémentaires qui viennent caractériser les comportements des consommateurs (données de navigations, sociales, et plus généralement les données digitales). L’enjeu aujourd’hui, est de pouvoir croiser les data de ces deux mondes (CRM & Digital). Les méthodes de réconciliation sont prêtes et les acteurs sur le marché proposent leur service à une qualité de matching qui devient intéressante (d’un point de vue statistique). Il ne reste plus qu’à définir la question à laquelle on souhaite répondre. Et c’est précisément ce point qu’il ne faut pas négliger !

Nous sommes convaincus que la construction de la « variable à expliquer » est un point majeur à la création de valeur future. Il est donc nécessaire de prendre le temps de définir une problématique qui soit réalisable et en adéquation avec la stratégie marketing. Que cherchons-nous à faire ? Réduire l’attrition ? Identifier l’appétence ? Maximiser la conversion ? Autant de sujet intéressant et d’actualité, mais qui restent généralistes et qui demandent à être préciser. Parle-t-on de contacts, de clients ou de prospects ? Intégrons-nous tous les segments de clients ou réalisons un focus sur une cible en particulier ? Vous l’aurez compris, il existe des filtres à intégrer dans la définition de la population à étudier. Ensuite, à nous de détecter les moments de vie et les cibles où nous maximiserons la conversion.

Le troisième point est peut-être le plus important. Il est indispensable d’utiliser / de tester / d’exploiter l’algorithme créé. Souvent nous remarquons qu’il existe de beaux scorings dans les entreprises, mais qui ne sont pas ou peu utilisés. Pour quelles raisons ? Juste parce qu’il existe encore une barrière de langage entre les dataminers / datascientists et le métier. Ou tout simplement parce que les équipes en place n’ont pas créé le modèle et donc n’en maîtrise pas les tenants et aboutissants. Sans oublier que les modèles prédictifs ont une durée de vie et qu’il est nécessaire, selon nous, de valider la véracité et la pérennité des algorithmes créés régulièrement. En d’autres termes, il ne s’agit pas de créer en one shot un score, mais il faut veiller à son application et sa performance dans le temps.
Un accompagnement dans les plans d’actions et la mesure des résultats peut-être nécessaire. L’objectif de performance peut alors augmenter de 15% à 20% avec un bon score, sur une bonne population, sur une bonne offre.
En d’autres termes, c’est un super outil prédictif, à vous, à nous de l’utiliser dans les meilleures conditions.
Contactez-nous pour faire le point !
AVIS D'EXPERTS : LE BIG DATA, PAR QUEL BOUT LE PRENDRE ?

Bon nombre d’experts se positionnent sur le sujet avec des convictions fortes et parfois opposées. Comment faire la part des choses entre ceux qui nous disent que cela va tout changer et les autres qui nous soutiennent que cela reste de l’analyse de données ? Quels sont les réels changements ? Sur quoi devons-nous être vigilants ? Comment ne pas tomber dans un projet sans fin sous le seul prétexte d’être présent sur le sujet ? Avec quelle organisation et quels profils ?

Notre vision reste le pragmatisme et l’itération du projet !

Tout d’abord, essayons d’en donner une définition : « Le principe des Big Data est de faire converger des données diverses et variées et de les exploiter à des fins de connaissance, de performance et d’usages. »

A chacun son niveau de maturité dans l’exploitation de la data et sur l’apport d’une telle démarche dans la stratégie de l’entreprise. Nous partageons l’avis de certains experts qui vont parler de SmartData. Car même si nous croyons à la puissance de la data dans sa plus pure exploitation, il existe encore un écart entre la réalité des projets mis en œuvre et les contraintes opérationnelles imposées aux équipes (budget, quickwins et ROI). Nous ne pouvons malheureusement pas tous allouer un budget R&D conséquent pour faire face à cette nouvel ère digitale ultra ciblée et connectée.

Mais, la question est bien de savoir comment nous continuons à avancer sur le sujet afin de ne pas être en retard dans les rendez-vous futurs que nous aurons avec les consommateurs.

L’offre KYP sur le sujet du Big Data est de vous faire gravir la montagne par étape et avec ambition. Grâce à notre passé ROiste, nous mesurerons l’apport de chacune de ces étapes au sein de votre marque/enseigne.

Pour cela, nous restons attentifs aux indicateurs des « V » du Big Data, car cela peut avoir un réel impact dans l’organisation, la réalisation et l’interprétation. Nous connaissons tous les « V » de : VOLUME, VARIETE, VELOCITE et VERACITE. A partir du moment où nous détectons l’activation d’un de ces « V », nous faisons appel à des experts internes et externes pour mesurer les enjeux du projet et mener à bien l’étape sur laquelle nous nous engageons.
N’oublions pas le « V », de VALIDITE qui à notre sens répond à la significativité et la robustesse des algorithmes (ce qui reste un éléments fondamental de la data intelligence). Et pour terminer le « V » de VALEUR, car après tout, c’est bien cette question qui est le nerf de la guerre (Valeur sur le business & Valeur sur l’intelligence créée).

Ce qui est certain, c’est que nous devons tous avancer dans cette course de la DATA INTELLIGENCE et qu’il faut commencer par un point de départ. Celui-ci est-il évident pour vous ? Nous serions ravis de pouvoir échanger avec vous sur le sujet.
BESOIN D'UN ENRICHISSEMENT DE VOTRE BASE DE DONNÉES CLIENTS ?

Souvent nos clients s'interrogent sur la qualité et la pertinence des données socio-démographiques collectées sur leurs clients. Et bien souvent leur constat est que leur base de données n'est pas assez riche en données socio-démographiques et comportementales.



Quand Open Data et expertise analytique répondent à cette problématique
Face à cette interrogation nous avons développé KYP-GÉOTYPO. Basée sur des données issues de l'Open Data (INSEE, DGFIP,...), elle permet une décomposition unique du territoire français en 23 segments homogènes regroupés en 6 familles.Elle offre ainsi une lecture fine des quartiers français selon 5 dimensions : démographie, logement, niveau de vie, équipements et services, économie et commerces.

Une mise en oeuvre simplifiée
Afin d'enrichir votre base de données, nous n'avons besoin que du pavé adresse de vos clients. Après traitement, nous serons en capacité de connaitre leur IRIS (les IRIS sont des gros quartiers, leur population se situe en général entre 1 800 et 5 000 habitants, ils sont homogènes quant au type d'habitat et leurs limites s'appuient sur les grandes coupures du tissu urbain, ainsi ils doivent respecter des critères géographiques et démographiques et avoir des contours identifiables sans ambiguïté et stables dans le temps). Et de là nous pourrons identifier pour chaque client le segment KYP-GÉOTYPO associé.

Pour un gain de valeur et de performance
Ces dernières semaines, une mutuelle nous a fait confiance pour caractériser sa cible en vue d'établir un plan média plus qualifié et donc plus performant : l'objectif in fine étant d'augmenter son taux de conversion (jusqu'à 10 points d'augmentation).
Si vous aussi vous souhaitez mieux appréhender le profil de vos clients, n'hésitez pas à nous contacter !